Multi-view graph clustering (MGC) methods are increasingly being studied due to the explosion of multi-view data with graph structural information. The critical point of MGC is to better utilize the view-specific and view-common information in features and graphs of multiple views. However, existing works have an inherent limitation that they are unable to concurrently utilize the consensus graph information across multiple graphs and the view-specific feature information. To address this issue, we propose Variational Graph Generator for Multi-View Graph Clustering (VGMGC). Specifically, a novel variational graph generator is proposed to extract common information among multiple graphs. This generator infers a reliable variational consensus graph based on a priori assumption over multiple graphs. Then a simple yet effective graph encoder in conjunction with the multi-view clustering objective is presented to learn the desired graph embeddings for clustering, which embeds the inferred view-common graph and view-specific graphs together with features. Finally, theoretical results illustrate the rationality of VGMGC by analyzing the uncertainty of the inferred consensus graph with information bottleneck principle. Extensive experiments demonstrate the superior performance of our VGMGC over SOTAs.
translated by 谷歌翻译
在本文中,我们研究了通过减少优化难度来改善对抗性训练(AT)获得的对抗性鲁棒性。为了更好地研究这个问题,我们为AT建立了一个新颖的Bregman Divergence观点,其中可以将其视为负熵曲线上训练数据点的滑动过程。基于这个观点,我们分析了方法(即PGD-AT和Trades)的两个典型方法的学习目标,并且我们发现交易的优化过程比PGD-AT更容易,而PGD-AT则将PGD-AT分开。此外,我们讨论了熵在贸易中的功能,我们发现具有高熵的模型可以是更好的鲁棒性学习者。受到上述发现的启发,我们提出了两种方法,即伪造和MER,它们不仅可以减少10步PGD对手下优化的难度,而且还可以提供更好的鲁棒性。我们的工作表明,在10步PGD对手下减少优化的难度是增强AT中对抗性鲁棒性的一种有前途的方法。
translated by 谷歌翻译
在机构研究模式中,为了探索哪些特征是预测具有高维,不平衡分类的小型样本的学生行为数据集的最佳指标,它将大学生的学术风险预测转化为二元分类任务。基于LightGBM模型的学术风险及福利价值的可解释机学习方法预测。仿真结果表明,从全球的预测模型的角度来看,学术伙伴的质量等特点,课堂上的座位位置,宿舍学习氛围,学院入学员的英语分数,学术伙伴的数量,视频游戏的成瘾水平,学术伙伴的流动性,以及逃学程度是学术风险最佳的8个预测因子。它违背了生活在校园里或没有工作,工作研究,口红成瘾,学生领导者,情人金额和吸烟的特征与本实验中的大学学术风险几乎没有相关。从样本的局部视角来看,影响学术风险的因素因人的人而异。它可以通过传统的数学统计预测模型来执行个性化的可解释分析,这不能通过传统的数学统计预测模型来完成。本研究的学术贡献主要是在两个方面:首先,第一次提出学习互动网络,使社会行为可用于弥补单方面的个人行为,提高学术风险预测的性能。其次,福利价值计算的引入使机器学习缺乏明确的推理过程可视化,并为教育管理者提供直观的决策支持。
translated by 谷歌翻译
大学评估和排名是一个非常复杂的活动。由于世界大学排名日益复杂的指标系统,主要大学正在挣扎。那么我们可以通过简化复杂性找到指标体系的元指标吗?本研究发现了基于可解释机器学习的三个元指标。第一个是时候,成为时间的时间,并相信时间的力量,积累历史沉积物;第二个是空间,成为城市的朋友,并通过合作发展;第三个是关系,成为校友的朋友,争取没有天花板的更多校友捐款。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Transformer has achieved impressive successes for various computer vision tasks. However, most of existing studies require to pretrain the Transformer backbone on a large-scale labeled dataset (e.g., ImageNet) for achieving satisfactory performance, which is usually unavailable for medical images. Additionally, due to the gap between medical and natural images, the improvement generated by the ImageNet pretrained weights significantly degrades while transferring the weights to medical image processing tasks. In this paper, we propose Bootstrap Own Latent of Transformer (BOLT), a self-supervised learning approach specifically for medical image classification with the Transformer backbone. Our BOLT consists of two networks, namely online and target branches, for self-supervised representation learning. Concretely, the online network is trained to predict the target network representation of the same patch embedding tokens with a different perturbation. To maximally excavate the impact of Transformer from limited medical data, we propose an auxiliary difficulty ranking task. The Transformer is enforced to identify which branch (i.e., online/target) is processing the more difficult perturbed tokens. Overall, the Transformer endeavours itself to distill the transformation-invariant features from the perturbed tokens to simultaneously achieve difficulty measurement and maintain the consistency of self-supervised representations. The proposed BOLT is evaluated on three medical image processing tasks, i.e., skin lesion classification, knee fatigue fracture grading and diabetic retinopathy grading. The experimental results validate the superiority of our BOLT for medical image classification, compared to ImageNet pretrained weights and state-of-the-art self-supervised learning approaches.
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
Digital engineering transformation is a crucial process for the engineering paradigm shifts in the fourth industrial revolution (4IR), and artificial intelligence (AI) is a critical enabling technology in digital engineering transformation. This article discusses the following research questions: What are the fundamental changes in the 4IR? More specifically, what are the fundamental changes in engineering? What is digital engineering? What are the main uncertainties there? What is trustworthy AI? Why is it important today? What are emerging engineering paradigm shifts in the 4IR? What is the relationship between the data-intensive paradigm and digital engineering transformation? What should we do for digitalization? From investigating the pattern of industrial revolutions, this article argues that ubiquitous machine intelligence (uMI) is the defining power brought by the 4IR. Digitalization is a condition to leverage ubiquitous machine intelligence. Digital engineering transformation towards Industry 4.0 has three essential building blocks: digitalization of engineering, leveraging ubiquitous machine intelligence, and building digital trust and security. The engineering design community at large is facing an excellent opportunity to bring the new capabilities of ubiquitous machine intelligence and trustworthy AI principles, as well as digital trust, together in various engineering systems design to ensure the trustworthiness of systems in Industry 4.0.
translated by 谷歌翻译
Surgical robot automation has attracted increasing research interest over the past decade, expecting its huge potential to benefit surgeons, nurses and patients. Recently, the learning paradigm of embodied AI has demonstrated promising ability to learn good control policies for various complex tasks, where embodied AI simulators play an essential role to facilitate relevant researchers. However, existing open-sourced simulators for surgical robot are still not sufficiently supporting human interactions through physical input devices, which further limits effective investigations on how human demonstrations would affect policy learning. In this paper, we study human-in-the-loop embodied intelligence with a new interactive simulation platform for surgical robot learning. Specifically, we establish our platform based on our previously released SurRoL simulator with several new features co-developed to allow high-quality human interaction via an input device. With these, we further propose to collect human demonstrations and imitate the action patterns to achieve more effective policy learning. We showcase the improvement of our simulation environment with the designed new features and tasks, and validate state-of-the-art reinforcement learning algorithms using the interactive environment. Promising results are obtained, with which we hope to pave the way for future research on surgical embodied intelligence. Our platform is released and will be continuously updated in the website: https://med-air.github.io/SurRoL/
translated by 谷歌翻译